Jumat, 20 Maret 2015

Aplikasi Termodinamika dalam Biologi

0 komentar
Pengaturan Suhu Tubuh 

Pengaturan temperatur adalah suatu pengaturan secara kompleks dari suatu proses fisiologisdi mana terjadi kesetimbangan antara produksi panas dan kehilangan panas sehingga suhu tubuh dapat dipertahankan secara konstan.
Burung atau mamalia secara fisiologis digolongkan dalam worm Blooded atau homotermal.Organisme homotermal ini secara umum dapat dikatakan temperatur tubuh tetap konstan walaupun suhu lingkungan berubah.Hal ini terjadi karena ada interaksi berantai antara pembentukan panas dan kehilangan panas.Kedua proses ini dalam keadaan tertentu aktifitasnya diatur oleh susunan syaraf pusat yang mana mengatur metabolisme, sirkulasi (peredaran darah),perspirasi (penguapan) dan pekerjaan otot-otot skeletal.sebagai contoh kontraksi otot banyak menghasilkan panas,rumusnya dapat di tulis:

K= W/H
Dimana :
K = Efisiensi 
H = Energi total (dalam kalori) pada waktu kerja 
W = Usaha dinyatakan dalam KgM
Temperatur 37˚C diterima sebagai temperatur normal tubuh manusia.Untuk mengukur rata-rata temperatur badan dan kulit terdapat banyak kesukaran.Berikut keterangan suhu tubuh dalam anggota badan manusia.
Dengan mengetahui termperatur kulit rata-rata kita dapat menentukan temperatur tubuhnya : ini bertdasarkan hasil percobaan temperatur basal nikel dan dubur pada keadaan temperatur lingkungan oleh DuBoir.N.Y.aced.Mned,1939,75:143-173.yaitu dengan cara : Mean Body temperatur = (0,69 x temperatur kulit rata-rata). 
Kuantitas suhu tubuh ini berkaitan dengan panas yang tertampung di dalam tubuh manusia (heat stronge).Untuk menghitung banyaknya panas yang tertampung dalam tubuh manusia.yaitu engan cara harus menghitung perubahan temperatur tubuh rata-rata dikalikan dengan panas spesifik dan mas badan maka diperoleh persamaan: Heat stronge =temperatur shange x spesifik heat x massa.





Gambar : Topografi Temperatur Badan atau Kulit



Temperatur 37°C diterima sebagai temperatur normal tubuh manusia. Daerah tubuh maupun kepala mempunyai temperatur kulit lebih tinggi dari pada anggota badan. 
Salah satu metode untuk mengetahui rata – rata temperatur kulit yang lazim digunakan adalah : 0,07 T kepala + 0,14 T lengan + 0,05T tangan + 0,07T kaki + 0,13T betis + 0,09T paha + 0,35T batang tubuh. 
JADI rata-rata temperatur kulit secara keseluruhan (0,07 x 33,5) + (0,14 x 32,9) + (0,05 x 33,3) + (0,07 x 30) + (0,13 x 32,3) + (0,09 x 23,5) + (0,35 x 31,2) /7 = 0,128.
Dengan mengetahui temperatur kulit ratarata tersebut dapat menghitung temperatur tubuh rata-rata dengan persamaan. Mean body temperatur adalah (0,69 X temperatur kapala) + (0,33 x temperatur kulit rata-rata). 

Radiasi 

Radiasi adalah proses perpindahan panas oleh gelombang elektromagnetik.Elektromagnetik tersebut bergerak dengan kecepatan 300 juta m/s dan untuk bergerak tidka memerlukan medium perantara.contoh jika kita meletakan tangan di samping api maka tangan akan terasa panas.panas merambat melalui radiasi.


Penerapan Proses Isotermal

0 komentar
 AC Ruangan

a. Bagian-bagian Ac Ruangan


Udara dingin tersebut sebenarnya merupakan output dari sistem yang terdiri dari beberapa komponen, yaitu; compressor AC, kondensor, orifice tube, evaporator, katup ekspansi, dan evaporator. Berikut adalah penjelasan singkat mengenai peran masing-masing bagian tersebut:


Compressor AC
Compressor AC adalah power unit dari sistem AC. Ketika AC dijalankan, compressor AC mengubah fluida kerja/refrigent berupa gas dari yang bertekanan rendah menjadi gas yang bertekanan tinggi. Gas bertekanan tinggi kemudian diteruskan menuju kondensor.

Kondensor AC
Kondensor adalah sebuah alat yang digunakan untuk mengubah gas yang bertekanan tinggi berubah menjadi cairan yang bertekanan tinggi yang kemudian akan dialirkan ke orifice tube. Kondensor merupakan bagian yang “panas” dari air conditioner. Kondensor bisa disebut heat exchange yang bisa memindahkan panas ke udara atau ke intermediate fluid (semacam air larutan yang mengandung ethylene glycol), untuk membawa panas ke orifice tube.

Orifice Tube
Orifice tube merupakan tempat di mana cairan bertekanan tinggi diturunkan tekanan dan suhunya menjadi cairan dingin bertekanan rendah. Dalam beberapa sistem, selain memasang sebuah orifice tube, dipasang juga katup ekspansi.

Katup Ekspansi
Katup ekspansi merupakan komponen penting dalam sistem air conditioner. Katup ini dirancang untuk mengontrol aliran cairan pendingin melalui katup orifice yang merubah wujud cairan menjadi uap ketika zat pendingin meninggalkan katup pemuaian dan memasuki evaporator/pendingin.

Evaporator AC
Refrigent menyerap panas dalam ruangan melalui kumparan pendingin dan kipas evaporator meniupkan udara dingin ke dalam ruangan. Refrigent dalam evaporator mulai berubah kembali menjadi uap bertekanan rendah, tapi masih mengandung sedikit cairan. Campuran refrigent kemudian masuk ke akumulator / pengering. Ini juga dapat berlaku seperti mulut/orifice kedua bagi cairan yang berubah menjadi uap bertekanan rendah yang murni, sebelum melalui compressor AC untuk memperoleh tekanan dan beredar dalam sistem lagi. Biasanya, evaporator dipasangi silikon yang berfungsi untuk menyerap kelembapan dari refrigent.

Thermostat
Thermostat pada air conditioner beroperasi dengan menggunakan lempeng bimetal yang peka terhadap perubahan suhu ruangan. Lempeng ini terbuat dari 2 metal yang memiliki koefisien pemuaian yang berbeda. Ketika temperatur naik, metal terluar memuai lebih dahulu, sehingga lempeng membengkok dan akhirnya menyentuh sirkuit listrik yang menyebabkan motor AC aktif.

b. Prinsip Kerja AC Ruangan
Compressor AC yang ada pada sistem pendingin dipergunakan sebagai alat untuk memampatkan fluida kerja (refrigent), jadi refrigent yang masuk ke dalam compressor AC dialirkan ke condenser yang kemudian dimampatkan di kondenser.
Di bagian kondenser ini refrigent yang dimampatkan akan berubah fase dari refrigent fase uap menjadi refrigent fase cair, maka refrigent mengeluarkan kalor yaitu kalor penguapan yang terkandung di dalam refrigent. Adapun besarnya kalor yang dilepaskan oleh kondenser adalah jumlahan dari energi compressor yang diperlukan dan energi kalor yang diambil evaparator dari substansi yang akan didinginkan.

Pada kondensor tekanan refrigent yang berada dalam pipa-pipa kondenser relatif jauh lebih tinggi dibandingkan dengan tekanan refrigent yang berada pada pipi-pipa evaporator.

Setelah refrigent lewat kondenser dan melepaskan kalor penguapan dari fase uap ke fase cair maka refrigent dilewatkan melalui katup ekspansi, pada katup ekspansi ini refrigent tekanannya diturunkan sehingga refrigent berubah kondisi dari fase cair ke fase uap yang kemudian dialirkan ke evaporator, di dalam evaporator ini refrigent akan berubah keadaannya dari fase cair ke fase uap, perubahan fase ini disebabkan karena tekanan refrigent dibuat sedemikian rupa sehingga refrigent setelah melewati katup ekspansi dan melalui evaporator tekanannya menjadi sangat turun.
Hal ini secara praktis dapat dilakukan dengan jalan diameter pipa yang ada dievaporator relatif lebih besar jika dibandingkan dengan diameter pipa yang ada pada kondenser.
Dengan adanya perubahan kondisi refrigent dari fase cair ke fase uap maka untuk merubahnya dari fase cair ke refrigent fase uap maka proses ini membutuhkan energi yaitu energi penguapan, dalam hal ini energi yang dipergunakan adalah energi yang berada di dalam substansi yang akan didinginkan.

Dengan diambilnya energi yang diambil dalam substansi yang akan didinginkan maka enthalpi [1] substansi yang akan didinginkan akan menjadi turun, dengan turunnya enthalpi maka temperatur dari substansi yang akan didinginkan akan menjadi turun. Proses ini akan berubah terus-menerus sampai terjadi pendinginan yang sesuai dengan keinginan. Dengan adanya mesin pendingin listrik ini maka untuk mendinginkan atau menurunkan temperatur suatu substansi dapat dengan mudah dilakukan.

Perlu diketahui :
Kunci utama dari air conditioner adalah refrigerant, yang umumnya adalah fluorocarbon [2], yang mengalir dalam sistem, menjadi cairan dan melepaskan panas saat dipompa (diberi tekanan), dan menjadi gas dan menyerap panas ketika tekanan dikurangi. Mekanisme berubahnya refrigerant menjadi cairan lalu gas dengan memberi atau mengurangi tekanan terbagi mejadi dua area: sebuah penyaring udara, kipas, dan cooling coil (kumparan pendingin) yang ada pada sisi ruangan dan sebuah compressor (pompa), condenser coil (kumparan penukar panas), dan kipas pada jendela luar.


Jenis-Jenis Ketel Uap (Steam Boiler)

0 komentar
1. Ketel Uap Vertikal Sederhana 

Ketel uap vertikal sederhana menghasilkan uap pada tekanan rendah dan dalam jumlah kecil. Karenanya digunakan pada pembangkit daya rendah atau pada tempat di mana ruang terbatas. Konstruksi ketel jenis ini diperlihatkan oleh gambar 1. Ketel ini terdiri dari kulit silinder yang mengelilingi kotak api silinder. Kotak api silinder ditap di atasnya tempat mengalirnya uap ke permukaan. Pada dasar kotak api terdapat grate (panggangan). Kotak api dilengkapi dengan dua atau lebih pipa melintang miring F, F. Kemiringan bertujuan untuk menaikkan permukaan pemanasan disamping juga untuk meningkatkan sirkulasi air. Lubang tangan (hand hole) dibuat disamping untuk keperluan pembersihan deposit. Sebuah lubang orang (man hole) dibuat di atas untuk supaya orang bisa memasuki ketel untuk pembersihan. Sebuah lobang abu dibuat pada dasar ketel untuk pembuangan abu yang mengendap. Ruang antara kulit boiler dan kotak api diisi dengan air yang akan dipanaskan.



2. Ketel Uap Cochran atau Ketel Pipa Banyak Vertikal
Ada banyak desain mengenai ketel pipa banyak, ketel Cochran dianggap sebagai salah satu ketel jenis ini yang paling efisien. Ketel cochran merupakan jenis ketel vertikal sederhana yang telah ditingkatkan. Ketel terdiri dari kulit silinder eksternal dan kotak api seperti yang diperllihatkan gambar 2. Kulit dan kotak api keduanya berbentuk setengah bola. Mahkota setengah bola pada kulit memberikan ruang maksimum dan kekuatan maksimum untuk menahan tekanan uap di dalam ketel. Kotak api dan ruang bakar (combustion chamber) dihubungkan melalui pipa pendek. Gas asap dari ruang bakar mengalir ke kotak asap (smoke box) melalui sejumlah pipa asap. Pipa ini umumnya mempunyai diameter luar 62,5 mm dan berjumlah 165 buah. Gas dari kotak asap mengalir ke atmosfir melalui cerobong (chimney).Ruang bakar dilapisi dengan batu tahan api pada sisi kulit. Lobang orang dekat puncak mahkota kulit diperlukan untuk pembersihan.
Pada dasar kotak api terdapat panggangan (dalam halpembakaran batubara) dan batu bara di umpan melalui lobang api (fire hole). Jika ketel digunakan untuk pembakaran bahan bakar minya, tidak diperlukan panggangan, tetapi dasar kotak api dilapisi dengan bata tahan api. Pembakar minyak di pasang di lobang api.



3. Ketel Scotch Marine
Ketel uap marine (kapal) jenis Scotch atau tangki digunakan untuk kerja di laut karena kekompakannya, efisien dalam operasinya dan kemampuannya untuk menggunakan berbagai jenis air. Ketel mempunyai drum dengan diameter dari 2,5 hingga 3,5 meter yang ditempatkan secara horisontal. Ketel uap ini bisa berupa ujung tunggal atau ujung ganda. Panjang ketel uap ujung tunggal bisa sampai 3,5 meter, sedangkan ujung ganda bisa sampai 6,5 meter. Ketel ujung tunggal mempunyai satu sampai empat dapur yang masuk dari sisi depan ketel. Ketel ujung ganda mempunyai dapur pada kedua ujungnya, dan bisa mempunyai dapur dari dua sampai empat pada setiap ujung. 
Ketel uap ujung tunggal Scotch marine bisa dilihat pada gambar 3. Setiap dapur mempunyai ruang bakarnya masing-masing. Terdapat pelat datar di setiap ruang bakar yaitu pelat atas, pelat bawah, dua pelat sisi dan pelat tube/pipa. Sejumlah pipa asap ditempatkan secara horisontal dan menghubungkan ruang bakar dengan cerobong. Pipa dapur, pipa asap dan ruang bakar, semuanya dikelilingi oleh air, memberikan luas permukaan pemanasan yang sangat besar. Air bersirkulasi disekeliling pipa asap. Level air dijaga sedikit diatas ruang bakar. Kotak asap (smoke box) dibuat dengan pintu untuk membersihkan pipa dan kotak asap. 



4. Ketel Lanchasire
Ketel ini merupakan jenis pipa api stasioner, pembakaran dalam, horisontal dan sirkulasi alami. Digunakan jika tekanan kerja dan daya yang diperlukan menengah. Ketel ini mempunyai diameter kulit silinder 1,75 hingga 2,75 meter. Panjangnya bervariasi dari 7,25 m hingga 9 m. Ketel ini mempunyai dua pipa gas asap internal yang berdiameter kira-kira 0,4 kali dari diameter kulit. Gambar ketel ini bisa dilihat pada gambar 4. Ketel ini terdiri dari kulit eksternal silinder panjang (1) yang terbuat dari pelat baja. Ketel mempunyai dua pipa api internal besar (2). Pipa ini diameternya mengecil pada bagian belakang untuk akses ke bagian yang lebih rendah pada ketel. Panggangan api (3) yang disebut juga dapur disediakan pada ujung pipa gas asap dimana disini bahan bakar padat dibakar. Pada ujung panggangan terdapat bata (5) yang berfungsi membelokkan gas asap ke atas. Gas asap panas setelah meninggalkan pipa gas asap internal turun ke pipa dasar (6). Gas asap ini bergerak ke depan ketel dimana alirannya terbagi dan mengalir ke lorong api sisi (7). Gas asap memasuki lorong utama (9) dan selanjutnya menuju cerobong. 



Damper (8) berguna untuk mengatur besar aliran gas asap keluar. Katup (11) berfungsi menyuplai uap ke mesin seperti yang dikehendaki. Ketel dilengkapi dengan katup pengaman pegas (10), katup pengaman jika uap tinggi dan air rendah (12). Blow off cock (16) untuk membuang lumpur dsb yang mengendap pada dasar ketel.

Termokopel

0 komentar
Pada dunia elektronika, termokopel adalah sensor suhu yang banyak digunakan untuk mengubah perbedaan suhu dalam benda menjadi perubahan tegangan listrik(voltase). Termokopel yang sederhana dapat dipasang, dan memiliki jenis konektor standar yang sama, serta dapat mengukur temperatur dalam jangkauan suhu yang cukup besar dengan batas kesalahan pengukuran kurang dari 1 °C.



Prinsip Operasi
Padatahun1821, seorang fisikawan Estonia bernama Thomas Johann Seebeckmenemukan bahwa sebuah konduktor (semacam logam) yang diberi perbedaan panas secara gradien akan menghasilkan tegangan listrik. Hal ini disebut sebagai efek termoelektrik. Untuk mengukur perubahan panas ini gabungan dua macam konduktor sekaligus sering dipakai pada ujung benda panas yang diukur. Konduktor tambahan ini kemudian akan mengalami gradiasi suhu, dan mengalami perubahan tegangan secara berkebalikan dengan perbedaan temperatur benda. Menggunakan logam yang berbeda untuk melengkapi sirkuit akan menghasilkan tegangan yang berbeda, meninggalkan perbedaan kecil tegangan memungkinkan kita melakukan pengukuran, yang bertambah sesuai temperatur. Perbedaan ini umumnya berkisar antara 1 hingga 70 microvolt tiap derajad celcius untuk kisaran yang dihasilkan kombinasi logam modern. Beberapa kombinasi menjadi populer sebagai standar industri, dilihat dari biaya, ketersediaanya, kemudahan, titik lebur, kemampuan kimia, stabilitas, dan hasil. Sangat penting diingat bahwa termokopel mengukur perbedaan temperatur di antara 2 titik, bukan temperatur absolut.

Termometer Galileo

0 komentar

Termometer Galileo (atau termometer Galilea), dinamai fisikawan Italia, Galileo Galilei, adalah termometer yang terbuat dari gelas silinder tertutup berisi cairan bening dan serangkaian benda yang kerapatannya sedemikian rupa sehingga mereka naik atau turun sesuai perubahan suhu.



Ciri desain

Di dalam cairan digantungkan sejumlah beban. Umumnya beban tersebut dilekatkan pada bola kaca tersegel yang berisi cairan berwarna untuk efek estetika. Saat suhu berubah, kerapatan cairan di dalam silinder turut berubah yang menyebabkan bola kaca bergerak timbul atau tenggelam untuk mencapai posisi di mana kerapatannya sama dengan cairan sekelilingnya atau terhenti oleh bola kaca lainnya. Bila perbedaan kerapatan bola kaca sangat kecil dan terurutkan sedemikian rupa sehingga yang kurang rapat berada di atas dan yang terapat berada di bawah, hal tersebut dapat membentuk suatu skala suhu.
Suhu dibaca dari ukiran piringan logam di setiap bola kaca. Biasanya sebuah celah memisahkan bola kaca atas dengan bola kaca bawah, berarti nilai suhu berada di antara kedua nilai label baca di setiap sisi celah. Bila bola kaca melayang-layang di celah, berarti nilai label baca mendekati suhu lingkungan.
Untuk mencapai keakuratan yang sesuai, toleransi beban harus dibuat kurang dari 1/1000 per satu gram (1 miligram).

Teori operasi

 Bola kaca dari dekat

Termometer Galilea bekerja dengan prinsip daya apung. Daya apung sendiri menentukan apakah suatu benda mengapung atau tenggelam dalam cairan, serta memberi penjelasan mengapa perahu yang terbuat dari baja bisa mengapung (sementara batangan baja padat dengan sendirinya akan tenggelam).Satu-satunya faktor yang menentukan apakah suatu objek besar naik atau turun dalam suatu cairan tertentu, berkaitan dengan kerapatan objek terhadap kerapatan cairan di mana ia ditempatkan. Jika massa benda lebih besar dari massa cairan pengisi, objek tersebut akan tenggelam. Jika massa benda kurang dari massa cairan pengisi, objek tersebut akan mengapung.

 

Thermodynamics of physics Copyright © 2012 Design by Ipietoon Blogger Template